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Categories

A category K consists of
a class of objects Obj(K),

a class of arrows
⋃

A,B∈Obj(K) K(A,B), where f ∈ K(A,B) means A
is the domain of f and B is the codomain of f ,
a partial associative composition operation ◦ defined on arrows,
where f ◦ g is defined⇐⇒ the domain of g coincides with the
domain of f .

Furthermore, for each A ∈ Obj(K) there is an identity idA ∈ K(A,A)
satisfying idA ◦ g = g and f ◦ idA = f for f ∈ K(A,X ), g ∈ K(Y ,A),
X ,Y ∈ Obj(K).
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W.Kubiś (http://www.math.cas.cz/kubis/) Generic objects 26.01–2.02.2019 4 / 47



Categories

A category K consists of
a class of objects Obj(K),
a class of arrows

⋃
A,B∈Obj(K) K(A,B), where f ∈ K(A,B) means A

is the domain of f and B is the codomain of f ,
a partial associative composition operation ◦ defined on arrows,
where f ◦ g is defined⇐⇒ the domain of g coincides with the
domain of f .

Furthermore, for each A ∈ Obj(K) there is an identity idA ∈ K(A,A)
satisfying idA ◦ g = g and f ◦ idA = f for f ∈ K(A,X ), g ∈ K(Y ,A),
X ,Y ∈ Obj(K).
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Definition
A sequence in K is a functor ~x from ω into K.

X0 X1 X2 · · ·
x1

0 x2
1 x3

2

Definition
Let ~x be a sequence in K. The colimit of ~x is a pair 〈X , {x∞n }n∈N〉 with
x∞n : Xn → X satisfying:

1 x∞n = x∞m ◦ xm
n for every n < m.

2 If 〈Y , {y∞n }n∈N〉 with y∞n : Xn → Y satisfies y∞n = y∞m ◦ ym
n for

every n < m then there is a unique arrow f : X → Y satisfying
f ◦ x∞n = y∞n for every n ∈ N.

W.Kubiś (http://www.math.cas.cz/kubis/) Generic objects 26.01–2.02.2019 5 / 47



Definition
A sequence in K is a functor ~x from ω into K.

X0 X1 X2 · · ·
x1

0 x2
1 x3

2

Definition
Let ~x be a sequence in K. The colimit of ~x is a pair 〈X , {x∞n }n∈N〉 with
x∞n : Xn → X satisfying:

1 x∞n = x∞m ◦ xm
n for every n < m.

2 If 〈Y , {y∞n }n∈N〉 with y∞n : Xn → Y satisfies y∞n = y∞m ◦ ym
n for

every n < m then there is a unique arrow f : X → Y satisfying
f ◦ x∞n = y∞n for every n ∈ N.
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The Banach-Mazur game

Definition
The Banach-Mazur game BM (K) played on K is described as follows.

There are two players: Eve and Odd.
Eve starts by choosing A0 ∈ Obj(K).
Then Odd chooses A1 ∈ Obj(K) together with a K-arrow a1

0 : A0 → A1.
More generally, after Odd’s move finishing with an object A2k−1, Eve
chooses A2k ∈ Obj(K) together with a K-arrow a2k

2k−1 : A2k−1 → A2k .
Next, Odd chooses A2k+1 ∈ Obj(K) together with a K-arrow
a2k+1

2k : A2k → A2k+1. And so on...
The result of a play is a sequence ~a:

A0 A1 · · · A2k−1 A2k · · ·
a1

0 a2k
2k−1
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Generic objects

General assumption: K ⊆ L.

Definition
We say that U ∈ Obj(L) is K-generic if Odd has a strategy in the
Banach-Mazur game BM (K) such that the colimit of the resulting
sequence ~a is always isomorphic to U, no matter how Eve plays.

Proposition
A K-generic object, if exists, is unique up to isomorphism.

Proof.
The rules for Eve and Odd are the same.
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Examples
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Example
Let K be the category of all finite linearly ordered sets with
embeddings.
Then 〈Q, <〉 is K-generic.

Example
Let K be the category of all finite graphs with embeddings.
Then the Rado graph R = 〈N,ER〉 is K-generic, where k < n are
adjacent if and only if the k th digit in the binary expansion of n is one.

Example
Let K be the category of all finite acyclic graphs with embeddings.
Then the countable everywhere infinitely branching tree is K-generic.
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Theorem (Urysohn, 1927)
There exists a unique Polish metric space U with the following
property:
(E) For every finite metric spaces A ⊆ B, every isometric embedding

e : A→ U can be extended to an isometric embedding f : B → U.

Furthermore:
Every separable metric space embeds into U.
Every isometry between finite subsets of U extends to a bijective
isometry of U.

Theorem
Let Mfin be the category of finite metric spaces with isometric
embeddings.
Then the Urysohn space U is Mfin-generic.
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The amalgamation property

Definition
We say that K has amalgamations at Z ∈ Obj(K) if for every K-arrows
f : Z → X , g : Z → Y there exist K-arrows f ′ : X →W , g′ : Y →W
such that f ′ ◦ f = g′ ◦ g.

Y W

Z X

g

f

g f ′

We say that K has the amalgamation property (AP) if it has
amalgamations at every Z ∈ Obj(K).
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Theorem (Universality)
Assume K has the AP and U is K-generic.
Then for every X = lim~x, where ~x is a sequence in K, there exists an
arrow

e : X → U.

Example
Let K be the category of all finite linear graphs with embeddings. Then
〈Z,E〉 is K-generic, where xEy ⇐⇒ |x − y | = 1.
On the other hand, 〈Z,E〉 ⊕ 〈Z,E〉 6↪→ 〈Z,E〉.
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Fraı̈ssé sequences

Definition
A Fraı̈ssé sequence in K is a sequence ~u : ω → K satisfying the
following conditions:

1 For every A ∈ Obj(K) there is n such that K(A,Un) 6= ∅.
2 For every n ∈ ω, for every K-arrow f : Un → Y there are m > n and

a K-arrow g : Y → Um such that g ◦ f = um
n .

U0 · · · Un Um · · ·

Y
f

um
n

g
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Theorem 1
Let ~u be a Fraı̈ssé sequence in K and let U = lim~u. Then U is
K-generic.

Proof.

· · · Un0 Un1 Un2 · · ·

A0 A2 A4 A6
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Fraı̈ssé categories

Definition
A Fraı̈ssé category is a countable category K satisfying:

1 For every X ,Y ∈ Obj(K) there is U ∈ Obj(K) such that

K(X ,U) 6= ∅ 6= K(Y ,U).

2 K has the amalgamation property.
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Theorem 2
Assume K ⊆ L is such that every sequence in K converges in L and K
is a Fraı̈ssé category. Then there exists a K-generic object in L.

Proof.
Let P be the poset of all finite sequences in K, i.e., covariant functors
from some n ∈ ω into K. The ordering is end-extension.
Let

D = {Dn,f : n ∈ ω, f ∈ K} ∪ {En,A : n ∈ ω, X ∈ Obj(K)},

where

Dn,f = {~x ∈ P : Xn = dom(f ) =⇒ (∃m > n)(∃g) g ◦ f = xm
n },

En,A = {~x ∈ P : (∃m > n) K(A,Xm) 6= ∅}.

Let ~u be the sequence coming from a D-generic filter/ideal. Then ~u is
Fraı̈ssé, therefore U = lim~u is K-generic.
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W.Kubiś (http://www.math.cas.cz/kubis/) Generic objects 26.01–2.02.2019 16 / 47



Theorem 2
Assume K ⊆ L is such that every sequence in K converges in L and K
is a Fraı̈ssé category. Then there exists a K-generic object in L.

Proof.
Let P be the poset of all finite sequences in K, i.e., covariant functors
from some n ∈ ω into K. The ordering is end-extension.
Let

D = {Dn,f : n ∈ ω, f ∈ K} ∪ {En,A : n ∈ ω, X ∈ Obj(K)},

where

Dn,f = {~x ∈ P : Xn = dom(f ) =⇒ (∃m > n)(∃g) g ◦ f = xm
n },

En,A = {~x ∈ P : (∃m > n) K(A,Xm) 6= ∅}.

Let ~u be the sequence coming from a D-generic filter/ideal. Then ~u is
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Fraı̈ssé theory

Definition
A Fraı̈ssé class is a class of finite models of a fixed countable
language satisfying:

(H) For every A ∈ F , every model isomorphic to a submodel of A
is in F .
(JEP) Every two models from F embed into a single model from
F .
(AP) F has the amalgamation property for embeddings.
(CMT) F has countably many isomorphic types.
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Theorem (Fraı̈ssé, 1954)
Let F be a Fraı̈ssé class. Then there exists a unique, up to
isomorphism, countable model U such that

1 F consists of all isomorphic types of finite submodels of U,
2 every isomorphism of finite submodels of U extends to an

automorphism of U (in other words, U is ultra-homogeneous).
Conversely, if U is a countable homogeneous model then the class of
all models isomorphic to finite submodels of U is Fraı̈ssé.
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More examples
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The Cantor set

Fix a compact 0-dimensional space K . Define the category KK as
follows.
The objects are continuous mappings f : K → S with S finite.
An arrow from f : K → S to g : K → T is a surjection p : T → S
satisfying p ◦ g = f .

T

K

S

p

g

f
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W.Kubiś (http://www.math.cas.cz/kubis/) Generic objects 26.01–2.02.2019 20 / 47



The Cantor set

Fix a compact 0-dimensional space K . Define the category KK as
follows.
The objects are continuous mappings f : K → S with S finite.

An arrow from f : K → S to g : K → T is a surjection p : T → S
satisfying p ◦ g = f .

T

K

S

p

g

f
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Let LK be the category whose objects are continuous mappings
f : K → X with X metrizable compact 0-dimensional.

An LK -arrow
from f : K → X to g : K → Y is a continuous surjection p : Y → X
satisfying p ◦ g = f .

Y

K

X

p

g

f
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Theorem (Bielas, Walczyńska, K.)
Let 2ω denote the Cantor set. A continuous mapping η : K → 2ω is
KK -generic⇐⇒ η is a topological embedding and η[K ] is nowhere
dense in 2ω.

Corollary (Knaster & Reichbach 1953)
Let h : A→ B be a homeomorphism between closed nowhere dense
subsets of 2ω. Then there exists a homeomorphism H : 2ω → 2ω such
that

H � A = h.
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The Gurarii space

Theorem (Gurarii 1966)
There exists a separable Banach space G with the following property.
(G) For every ε > 0, for every finite-dimensional normed spaces

E ⊆ F, for every linear isometric embedding e : E → G there
exists a linear ε-isometric embedding f : F → G such that
f � E = e.

Theorem (Lusky 1976)
Among separable spaces, property (G) determines the space G
uniquely up to linear isometries.

Elementary proof: Solecki & K. 2013.

W.Kubiś (http://www.math.cas.cz/kubis/) Generic objects 26.01–2.02.2019 23 / 47



The Gurarii space

Theorem (Gurarii 1966)
There exists a separable Banach space G with the following property.
(G) For every ε > 0, for every finite-dimensional normed spaces

E ⊆ F, for every linear isometric embedding e : E → G there
exists a linear ε-isometric embedding f : F → G such that
f � E = e.

Theorem (Lusky 1976)
Among separable spaces, property (G) determines the space G
uniquely up to linear isometries.

Elementary proof: Solecki & K. 2013.
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Theorem
The Gurarii space G is generic over the category Bfd of
finite-dimensional normed spaces with linear isometric embeddings.

Key Lemma (Solecki & K.)
Let X , Y be finite-dimensional normed spaces, let f : X → Y be an
ε-isometry with 0 < ε < 1. Then there exist a finite-dimensional
normed space Z and isometric embeddings i : X → Z , j : Y → Z such
that

‖i − j ◦ f‖ 6 ε.
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The pseudo-arc

Let I be the category of all continuous surjections from the unit interval
[0,1] onto itself.

Let C be the category of all chainable continua.

Theorem
The pseudo-arc is I-generic.
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Part 2
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Weak Fraı̈ssé sequences

Definition
A sequence ~u : ω → K is a weak Fraı̈ssé sequence if it satisfies the
following conditions:

1 For every A ∈ Obj(K) there is n such that K(A,Un) 6= ∅.
2 For every n ∈ ω there exists n∗ > n such that for every K-arrow

f : Un∗ → Y there are m > n∗ and a K-arrow g : Y → Um with
g ◦ f ◦ un∗

n = um
n .

· · · Un Un∗ Um · · ·

Y
f g
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W.Kubiś (http://www.math.cas.cz/kubis/) Generic objects 26.01–2.02.2019 27 / 47



Weak Fraı̈ssé sequences
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Theorem
Assume ~u is a weak Fraı̈ssé sequence in K and U = lim~u. Then U is
K-generic.

Proof.

· · · Un0 Un∗0 Un1 Un∗1 Un2 · · ·

A0 A2 A4 A6
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Weakenings of amalgamation

Definition
We say that K has the cofinal amalgamation property (CAP) if for every
Z ∈ Obj(K) there is a K-arrow e : Z → Z ′ such that K has
amalgamations at Z ′.

Definition (Ivanov 1999; Kechris & Rosendal 2007; Kruckman
2016)
We say that K has the weak amalgamation property (WAP) if for every
Z ∈ Obj(K) there is a K-arrow e : Z → Z ′ such that for every K-arrows
f : Z ′ → X , g : Z ′ → Y there exist K-arrows f ′ : X →W , g′ : Y →W
such that f ′ ◦ f ◦ e = g′ ◦ g ◦ e.
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W.Kubiś (http://www.math.cas.cz/kubis/) Generic objects 26.01–2.02.2019 29 / 47



CAP and WAP

Y W

Z ′ X

Z

g′

f

g f ′

e

Proposition
Finite graphs of vertex degree 6 2 have the CAP.
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Weak injectivity

Definition
An object V ∈ Obj(L) is weakly K-injective if

every K-object has an L-arrow into V , and
for every L-arrow e : A→ V there exists a K-arrow i : A→ B such
that for every K-arrow f : B → Y there is an L-arrow g : Y → V
satisfying g ◦ f ◦ i = e.

A B Y

V

i

e

f

g
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Theorem (Krawczyk & K. 2016)
Let K be a countable directed category of finitely generated models
with embeddings.

The following conditions are equivalent:
(a) There exists a K-generic model.
(b) K has the WAP.

Theorem (Krawczyk & K. 2016)
Let K be as above and let U be a countably generated model. The
following properties are equivalent:
(a) U is K-generic.
(b) Eve does not have a winning strategy in BM (K,U).
(c) U is weakly K-injective.
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The first example of a weak Fraı̈ssé class with no CAP

J.-F. PABION, Relations préhomogènes, C. R. Acad. Sci. Paris
Sér. A-B 274 (1972) A529–A531.

A quote from Pabion’s paper:
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Weak Fraı̈ssé theory

Definition
A weak Fraı̈ssé class is a class F of finitely generated models of a
fixed countable signature, closed under isomorphisms, having with
many types, satisfying (JEP) and (WAP).

Theorem
Let F be a weak Fraı̈ssé class. Then there exists a unique countable
model U that is weakly F -injective and weakly homogeneous.
Furthermore, U is F -generic.
Conversely, given a countable weakly homogeneous model M, its age

F = {A : A is finitely generated and embeddable into M}

is a weak Fraı̈ssé class.

W.Kubiś (http://www.math.cas.cz/kubis/) Generic objects 26.01–2.02.2019 34 / 47



Weak Fraı̈ssé theory
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Definition
A structure M is weakly homogeneous if for every finitely generated
substructure A ⊆ M there is a bigger finitely generated substructure
B ⊆ M containing A such that every embedding e : A→ M extendable
to B extends to an automorphism of M.
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Theorem (Krawczyk, Kruckman, Panagiotopoulos, K. 2018)
There exist continuum many hereditary weak Fraı̈ssé classes of finite
graphs without the cofinal AP.

Example
Let G be the class of all finite acyclic graphs in which no two vertices of
degree > 2 are adjacent.
Then G is a weak Fraı̈ssé class failing the CAP.
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Peano continua

Theorem (Bartoš, K. 2018)
Let K be a class of non-degenerate Peano continua treated as a
category with all continuous surjections. Then the pseudo-arc is
Kop-generic.

(Kop is the category opposite to K.)

Theorem (Kwiatkowska, K. 2017)
The Poulsen simplex is generic over the (opposite) category of
finite-dimensional simplices with affine surjections.
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Question (Eric Jaligot, 2007)
Let M be a countable homogeneous structure. Is it always true that the
group Aut(M) contains isomorphic copies of all groups of the form
Aut(X ), where X is a substructure of M?

If this is the case, we shall say that Aut(M) is universal.
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Uniform homogeneity

Definition (Kuzeljević, K. 2018)
A structure M is uniformly homogeneous if

1 M is homogeneous and
2 for every finite substructure A ⊆ M there exists an extension

operator eA : Aut(A)→ Aut(M) such that

eA(g ◦ h) = eA(g) ◦ eA(h)

for every g,h ∈ Aut(A).
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A homogeneous digraph that is not uniformly
homogeneous

a0 b0

a b

b1 a1
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Katětov functors

Definition
Let F be a class of finite structures of the same type and let M be a
countable homogeneous structure such that every A ∈ F embeds into
M and every finite substructure of M is isomorphic to some A ∈ F . A
Katětov functor is a pair 〈K , η〉 such that K assigns to each embedding
e : A→ B with A,B ∈ F an embedding K (e) : M → M, η assigns to
each A ∈ F an embedding ηA : A→ M. Furthermore, K is a functor,
i.e., K (idA) = idM , K (e ◦ f ) = K (e) ◦ K (f ), and the following diagram
commutes

A M

B M

e

ηA

K (e)

ηB

for every embedding e : A→ B with A,B ∈ F .
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Theorem (Mašulović & K.)
Assume 〈F ,M〉 admits a Katětov functor. Then for every substructure
X of M there exists a topological group embedding

eX : Aut(X )→ Aut(M).

Claim (M)
Most of the well known homogeneous relational structures admit a
Katětov functor.

W.Kubiś (http://www.math.cas.cz/kubis/) Generic objects 26.01–2.02.2019 43 / 47



Theorem (Mašulović & K.)
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Non-universal automorphism groups

Theorem (Shelah & K. 2018)
There exists a countable homogeneous relational structure E such
that:

every finite group embeds into Aut(E),
S∞ does not embed into Aut(E),
S∞ ≈ Aut(X ) for some X ⊆ E.

Furthermore, E is not uniformly homogeneous.
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Theorem (Shelah & K. 2018)
There exists a countable homogeneous relational structure M such
that:

Aut(M) is torsion-free,
for every n ∈ N there is a finite A ⊆ M with Sn ≈ Aut(A).
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R. Fraı̈ssé, Sur lextension aux relations de quelques propriétés
des ordres, Ann. Sci. Ecole Norm. Sup. (3) 71 (1954) 363–388

E. Jaligot, On stabilizers of some moieties of the random
tournament, Combinatorica 27 (2007) 129–133
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W.Kubiś (http://www.math.cas.cz/kubis/) Generic objects 26.01–2.02.2019 46 / 47

https://arxiv.org/abs/1811.09650
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